Blood snow. Image: © Jean-Gabriel/ VALAY/ JARDIN DU LAUTARET/UGA/CNRS
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
That’s why European scientists have banded together to form ALPALGA, a collaboration that aims to better understand these alpine algae, which can act as primary producers, pioneer species, and “potential markers of climate change,” according to a study published on Monday in Frontiers in Plant Science. “I've seen, in my lifetime, the disappearance of ecosystems on a scale not of 100 years, but decades,” said study author Eric Maréchal, director of the Cell and Plant Physiology Laboratory, a joint unit of CNRS, CEA, INRA and University Grenoble Alpes, in a call. “This ecosystem is super fragile.”In a way, the fragility of these systems is counter-intuitive, because the algal blooms that produce these alpine stains of red, purple, and orange are actually a sign of flourishing life. The eerie biological dye goes by many names—watermelon snow or red snow, for instance—and it is common on mountain tops and glaciers around the world, from the Sierra Nevada, to the Himalayas, to Greenland’s ice sheets, sparking speculation among mountaineers, naturalists, and polar explorers for centuries.Scientists now know the effect is a microalgal adaptation strategy to the onset of summer, which brings with it snowmelt and intense sunshine and UV radiation. Green algae are green, as the name implies, but warmer weather triggers them to produce a red carotenoid pigment as a kind of sunscreen.
Advertisement
Advertisement