Artist concept of a micronova. Image: ESO/M. Kornmesser, L. Calçada
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
Novae are among the most dazzling sights in the night sky, and have been witnessed by astronomers for many centuries. Unlike supernovae, which are the pyrotechnic swan songs of giant stars, novae occur when white dwarfs, the compact corpses of stars like our Sun, end up in binary systems with another star. As the two objects orbit each other, the gravitational pull of the white dwarf tugs stellar material off of its companion as part of a process called accretion, which fuels radiant thermonuclear bursts across the entire surface of the dead star.For about 40 years, scientists have been perplexed by flashes emitted by one of these white dwarfs, known as TV Columbae, which is in a binary system with a low-mass star. The bursts are relatively dim and they only last for a few hours, whereas typical novae are bright and can shine for several weeks. Now, researchers led by Simone Scaringi, an astronomer at Durham University, believe they have solved this long-standing enigma using NASA’s Transiting Exoplanet Survey Satellite (TESS). The team suggests the bursts at TV Columbae, along with two similar white dwarfs called EI Ursae Majoris and ASASSN-19bh, are powered by micronovae that are localized to the poles of these dead stars, a process that may be “more common than previously thought,” according to a study published on Wednesday in Nature.
Advertisement
Advertisement