Fossilized spider from the Aix-en-Provence Formation. Image:
Olcott et al
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
A new study describing the work chalks this glow up to the role of diatoms, single-celled organisms that form microalgae, which have preserved the exquisite remains of soft-bodied creatures such as spiders, which normally decompose without leaving fossils.Olcott and her colleagues present “the first description of diatoms from the Aix-en-Provence Formation, despite its long history of investigation,” according to a study published on Thursday in the journal Communications Earth & Environment. The study reports that the diatoms played a “hitherto unknown” role in preserving soft-bodied species that may be “responsible for much of our understanding of insect, arachnid, amphibian, and plant life” in these lake settings.“As far as we know, nobody has ever reported diatoms from the site,” said Olcott, who is also director of the Center for Undergraduate Research at KU, in a call. “This Aix-en-Provence fossil deposit is interesting because there's this historical aspect as well, where people have been describing fossils for centuries—looking at all these really cool insects, spiders, fish, shrimp that they pull up.” While the site has long been known to researchers, the mechanism that captured these incredible fossils has remained elusive. Now, Olcott and her colleagues have literally shed light on this question by studying the spider fossils under ultraviolet wavelengths.
Advertisement
Spider fossil with the presence of two kinds of siliceous microalgae: a mat of straight diatoms on the fossil and dispersed centric diatoms in the surrounding matrix. Image: Olcott et al
Advertisement