
We know this because scientists detected it not by using telescopes, but by shooting lasers along 2.5-mile tunnels as part of a massive physics experiment called the LIGO Scientific Collaboration. Stephen Hawking has called it a key moment of scientific history."The idea is that the lasers go up and down these tubes… they bounce off a mirror and come back, when they meet at the LIGO center they should cancel out," Duffy explains. But if one of the beams has traveled a slightly different distance, it means it has been stretched by the gravitational waves emitted from the black hole. "They won't perfectly cancel, and you'll get a little bit of light hitting your detector," Duffy says, which is exactly what the scientists at LIGO saw on September 14, 2015.On Motherboard: Why Gravitational Physicists Don't Sleep at NightWhy is this discovery important? Well, two reasons. First, we've never directly seen black holes before this moment. Scientists have been pretty sure they exist, but this is solid proof. "That in itself would be Nobel Prize–winning," says Duffy. "But, to put it in perspective, it won't even get a mention because of the enormity of the gravitational waves themselves."

Advertisement
