Image: NASA
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
Now, scientists led by Andrew Ingersoll, who serves as Earle C. Anthony Professor of Planetary Sciences at the California Institute of Technology, have shed new light on the strange storms that encircle Jupiter’s north pole, each of which is about as large as the continental United States. Their results suggest that an “anticyclonic ring” of winds that blow in the opposite direction of the cyclones “is needed for the stability of the polygonal pattern,” though the team noted that other questions about the storms remain, according to a study published on Thursday in Nature Astronomy.“Since 2017 the Juno spacecraft has observed a cyclone at the north pole of Jupiter surrounded by eight smaller cyclones arranged in a polygonal pattern,” the researchers said in the study. “It is not clear why this configuration is so stable or how it is maintained.”
“The polygons and the individual vortices that comprise them have been stable for the four years since Juno discovered them,” the team added. “The polygonal patterns rotate slowly, or not at all….In contrast, Saturn has only one vortex, a cyclone, at each pole.”
Sign up for Motherboard’s daily newsletter for a regular dose of our original reporting, plus behind-the-scenes content about our biggest stories.
Advertisement