Artist's depiction of Proxima Centauri B. Image: ESO/M. Kornmesser via NASA
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
Water is so fundamental to life on Earth that scientists consider it to be the most valuable compound to look for in the hunt for aliens on other worlds. While Earth is the only planet in our own solar system that currently hosts watery oceans on its surface, some of our neighboring worlds host subsurface oceans beneath their icy shells, including Jupiter’s moon Europa and Saturn’s moon Enceladus.Lujendra Ojha, a planetary scientist at Rutgers University, has now presented evidence that geothermal heat within many cold “exo-Earths,” meaning Earth-like planets in other star systems, at the Goldschmidt Conference in Lyon, France. These subglacial oceans in red dwarf systems “might resemble the subsurface conditions found on Europa” and “may provide habitable conditions for an extended period,” according to a study led by Ojha that was published in Nature late last year. “I was pleasantly surprised,” said Ojha in a call with Motherboard, referring to his team’s results. He added that the “TL;DR” of the research is that “if there's ice [on a planet], it’s more likely to have melted and created liquid water than the other way around.”
Advertisement
“Most Earth-like exoplanets that we have found today orbit around M dwarfs,” Ojha explained. “Given that basal melting was something that likely happened and, depending on who you talk to, could have been one of the main ways of generating liquid water on our solar system’s planets billions of years ago, we wanted to ascertain what would be required for basal melting, and if this could happen on other planetary bodies.”With that aim in mind, the researchers ran sophisticated models of exoplanets that are based on real worlds that have been spotted by telescopes, including Proxima Centauri B, TRAPPIST-1 e, and Kepler 442 b. The team specifically focused on the dynamics of various ice sheets as a way to constrain the odds that subglacial oceans could melt out as a result of geothermal energy on extraterrestrial worlds.The results revealed that even modest flows of geothermal heat could thaw out bodies of water under the ice shells of distant exoplanets, indicating that these hidden oceans are likely abundant in red dwarf systems across the Milky Way.
Advertisement
Advertisement