Image: Roslan RAHMAN / AFP via Getty Images
ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.
This need for new perspectives on urban bustle inspired researchers, led by MIT’s Senseable City Laboratory, to tap into data collected from millions of anonymized mobile phone users with the aim of filling a key gap in models of human movement in cities. The results reveal what the researchers describe as a new “universal visitation law of human mobility” that “opens up unprecedented possibilities” to predict flows between locations and that can be applied to cities as diverse as Boston, Singapore, and Dakar, according to a study published on Wednesday in Nature. The new research is “the result of years of research” at MIT, in collaboration with physicist Geoffrey West at the Santa Fe Institute, according to a joint email to VICE from study authors Carlo Ratti, director of Senseable City Lab (SCL); Paolo Santi, who leads the lab’s MIT/Fraunhofer Ambient Mobility initiative; and Lei Dong, a postdoctoral associate at SCL. The team’s approach was “motivated by the fact that current research focused on characterizing human flows between distant places” has “overlooked frequency of visitation,” Ratti, Santi, and Dong said. “We start by empirically characterizing this relationship and found that it could be described by a very clear mathematical law.”In other words, the researchers aimed to combine established models of human mobility that have primarily fallen into two categories: large-scale maps that track aggregate numbers of people moving between locations, and more granular studies that track the frequency with which one individual visits different locations.
Advertisement
Advertisement
This image visualizes the flows of individuals across the Greater Boston area as lines (visiting frequency as the color, number of unique visitors as the width) that form spatial clusters of attractive places, with the height of mountains representing location-specific attractiveness. Credit: Guangyu Du.
Advertisement